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COEFFICIENT INEQUALITIES FOR STARLIKENESS

AND CONVEXITY

ROSIHAN M. ALI, MAHNAZ M. NARGESI AND V. RAVICHANDRAN

Abstract. For an analytic function f (z)= z+
∑∞

n=2 an zn satisfying the inequality
∑∞

n=2 n(n−

1)|an | ≤β, sharp bound on β is determined so that f is either starlike or convex of order

α. Several other coefficient inequalities related to certain subclasses are also investigated.

1. Introduction

Let A be the class of analytic functions in D= {z ∈C : |z| < 1}, normalized by f (0) = 0 and

f ′(0) = 1. A function f ∈A has a Taylor’s series expansion of the form

f (z) = z +
∞
∑

n=2

an zn . (1)

For 0 ≤ α < 1, let S
∗(α) and C (α) be the subclasses of A consisting respectively of starlike

functions of order α and convex functions of order α. These functions are known to be uni-

valent, and are defined analytically by

S
∗(α) :=

{

f ∈A : Re

(

z f ′(z)

f (z)

)

>α

}

,

and

C (α) :=

{

f ∈A : Re

(

1+
z f ′′(z)

f ′(z)

)

>α

}

.

The classes S
∗ := S

∗(0) and C := C (0) are the familiar classes of starlike and convex func-

tions. Closely related are the classes of functions

S
∗
α :=

{

f ∈A :

∣

∣

∣

∣

z f ′(z)

f (z)
−1

∣

∣

∣

∣

< 1−α

}

,

and

Cα :=

{

f ∈A :

∣

∣

∣

∣

z f ′′(z)

f ′(z)

∣

∣

∣

∣

< 1−α

}

.
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Note that S
∗
α ⊆S

∗(α) and Cα ⊆C (α). For β< 1, α ∈R, a function f ∈A belongs to the class

R(α,β) if it satisfies the inequality

Re

(

z f ′(z)

f (z)

(

α
z f ′′(z)

f ′(z)
+1

))

>β.

Clearly, R(0,β) =S
∗(β). For β≥−α/2, Li and Owa [6] proved that R(α,β) ⊂S

∗.

A function f ∈ S is k-uniformly convex (k ≥ 0), if f maps every circular arc γ contained

in D with center ζ, |ζ| ≤ k , onto a convex arc. The class of k-uniformly convex functions is

denoted by k −UC V . Goodman [4] introduced the class UC V := 1−UC V while the class

k −UC V was introduced by Kanas and Wisniowska [8]. They showed that f ∈ k −UC V [8,

Theorem 2.2, p. 329] (see also [3] for details) if and only if f satisfies the inequality

k

∣

∣

∣

∣

z f ′′(z)

f ′(z)

∣

∣

∣

∣

<Re

(

1+
z f ′′(z)

f ′(z)

)

.

This analytic characterization is used to obtain the following sufficient condition for a func-

tion to be k-uniformly convex.

Theorem 1.1 ([8, Theorem 3.3, p. 334]). If f (z) = z+
∑∞

n=2 an zn satisfies the inequality
∑∞

n=2 n(n−

1)|an | ≤ 1/(k+2) (k ≥ 0), then f ∈ k−UC V . The bound 1/(k+2) cannot be replaced by a larger

number.

The above result extended Goodman’s [4, Theorem 6] case of k = 1 for functions to be

k-uniformly convex. In the special case k = 0, Theorem 1.1 shows that the constant is 1/2 for

functions f to be convex.

A function f ∈A is parabolic starlike of order α if

∣

∣

∣

∣

z f ′(z)

f (z)
−1

∣

∣

∣

∣

< 1−2α+Re

(

z f ′(z)

f (z)

)

.

A sufficient coefficient inequality condition for functions to be parabolic starlike is given in

the following result.

Theorem 1.2 ([2, Theorem 3.1, p. 564]). If f (z) = z+
∑

∞
n=2 an zn satisfies the inequality

∑

∞
n=2(n−

1)|an | ≤ (1−α)/(2−α), then f is parabolic starlike of order α. The bound (1−α)/(2−α) cannot

be replaced by a larger number.

Further to Theorems 1.1 and 1.2, the present paper determines the largest bound β for

analytic functions f (z) = z +
∑

∞
n=2 an zn satisfying the inequality

∑

∞
n=2 n(n −1)|an | ≤ β to be

either starlike or convex of some positive order. In Section 3, a similar problem is investigated
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for functions f satisfying the coefficient inequality
∑∞

n=2

(

αn2 + (1−α)n −β
)

|an | ≤ 1−β. Sec-

tion 4 looks at starlike and convex functions of positive order with negative coefficients. In

these classes, the largest value is obtained that bounds each coefficient inequality of the form
∑

nan ,
∑

n(n −1)an ,
∑

(n −1)an and
∑

n2an . The final section of the paper applies the results

obtained to hypergeometric functions.

The following necessary and sufficient conditions for functions to belong to certain sub-

classes of starlike and convex functions will be used in the sequel.

Theorem 1.3 ([9, Theorem 2, p. 961], [11, Theorem 1 & Corollary, p. 110]).

1. If f (z) = z +
∑

∞
n=2 an zn satisfies the inequality

∞
∑

n=2

(n −α)|an | ≤ 1−α, (2)

then f ∈S
∗
α . If an ≤ 0, then condition (2) is necessary for f ∈S

∗(α).

2. Similarly, if f satisfies the inequality

∞
∑

n=2

n(n −α)|an| ≤ 1−α, (3)

then f ∈Cα. If an ≤ 0, then condition (3) is necessary for f ∈C (α).

Theorem 1.3 (1) was proved independently by Merkes, Robertson, and Scott [9, Theorem

2, p. 961] in 1962, and by Silverman [11, Theorem 1, p. 110] in 1975. Theorem 1.3 (2) follows

by an application of Alexandar’s result, and it was proved in [11, Corollary, p. 110].

2. Sufficient coefficient estimates for starlikeness and convexity

The following theorem provides a sufficient coefficient inequality for functions to be in the

classes Cα or S
∗
α .

Theorem 2.1. Let α ∈ [0,1), and f ∈A given by (1) satisfy the inequality

∞
∑

n=2

n(n −1)|an | ≤β< 1. (4)

(1) The function f belongs to the class Cα if β≤ (1−α)/(2−α). The bound (1−α)/(2−α) is

sharp.

(2) The function f belongs to the class S
∗
α if β≤ 2(1−α)/(2−α). The bound 2(1−α)/(2−α)

is sharp.
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Proof. (1) Let f satisfy inequality (4) with β≤ (1−α)/(2−α). Since

n −α≤ (2−α)(n −1) (5)

for n ≥ 2, the inequality (4) leads to

∞
∑

n=2

n(n −α)|an| ≤ (2−α)
∞
∑

n=2

n(n −1)|an | ≤ (2−α)β≤ 1−α.

Thus, it follows from Theorem 1.3 (2) that f ∈Cα. The function f0 : D→C defined by

f0(z) = z −
1−α

2(2−α)
z2

satisfies the hypothesis of Theorem 1.3 and therefore f0 ∈Cα. This function f0 shows that the

bound for β is sharp.

(2) Now, let f satisfy inequality (4) with β ≤ 2(1−α)/(2−α). When n ≥ 2, inequality (5)

leads to

(n −α) ≤
n(n −α)

2
≤

(2−α)n(n −1)

2
,

and hence
∞
∑

n=2

(n −α)|an | ≤
(2−α)

2

∞
∑

n=2

n(n −1)|an | ≤ (1−α).

By Theorem 1.3(1), f ∈S
∗
α . The function

f0(z) = z −
1−α

2−α
z2

∈S
∗
α

shows that the result is sharp. ���

Corollary 2.2. [8, Theorem 3.3, p. 334] If f ∈A given by (1) satisfies the inequality

∞
∑

n=2

n(n −1)|an| ≤
1

k +2
,

then f ∈ k −UC V . Further, the bound 1/(k +2) is sharp.

Proof. By Theorem 2.1 (1), it follows that f ∈Ck/(k+1), and hence

∣

∣

∣

∣

z f ′′(z)

f ′(z)

∣

∣

∣

∣

<
1

k +1
. (6)

Inequality (6) yields

k

∣

∣

∣

∣

z f ′′(z)

f ′(z)

∣

∣

∣

∣

<
k

k +1
= 1−

1

k +1
< 1−

∣

∣

∣

∣

z f ′′(z)

f ′(z)

∣

∣

∣

∣

< 1+Re

(

z f ′′(z)

f ′(z)

)

,

and hence f ∈ k −UC V . ���

It is evident that Alexander’s relation holds between the classes Cα and S
∗
α . Thus f ∈Cα

if and only if z f ′ ∈S
∗
α , and Theorem 2.1 (1) readily yields the following result.
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Corollary 2.3. Let α ∈ [0,1). If f ∈A is given by (1) and

∞
∑

n=2

(n −1)|an | ≤
1−α

2−α
,

then f ∈S
∗
α . Further, the bound (1−α)/(2−α) is sharp.

The corollary above can also be deduced from Theorem 1.3 (1) and the inequality n−α≤

(2−α)(n −1), n ≥ 2.

Remark 2.4. Theorem 1.2 for the class of parabolic starlike functions of order ρ was obtained

by Ali [2, Theorem 3.1, p. 564] by using a two-variable characterization of a corresponding

class of uniformly convex functions.

Theorem 2.5. Let α ∈ [0,1) and f ∈A be given by (1).

(1) If
∞
∑

n=2

n|an| ≤ 1−α , then f ∈S
∗
α .

(2) If
∞
∑

n=2

n2
|an | ≤ 1−α , then f ∈Cα.

(3) If
∞
∑

n=2

n2
|an | ≤ 4(1−α)/(2−α) , then f ∈S

∗
α and the bound 4(1−α)/(2−α) is sharp.

Proof. The first two parts follow from Theorem 1.3 and the simple inequality n −α< n. The

third follows from Theorem 1.3 (1) and use of the identity (n −α) ≤ n2(2−α)/4 (n ≥ 2). The

result is sharp as demonstrated by the function f0 given by

f0(z) = z −
1−α

2−α
z2. ���

3. The subclass R(α,β)

As introduced earlier, the class R(α,β) consists of functions f satisfying the inequality

Re

(

z f ′(z)

f (z)

(

α
z f ′′(z)

f ′(z)
+1

)

)

>β, (β< 1, α ∈R). (7)

The following lemma provides a sufficient coefficient condition for functions f to belong

to the class R(α,β).

Lemma 3.1. ([7, Theorem 6, p. 412]) Let β< 1, and α≥ 0. If f ∈A satisfies the inequality

∞
∑

n=2

(

αn2
+ (1−α)n −β

)

|an | ≤ 1−β, (8)

then f ∈R(α,β).
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In the special case α= 0, Lemma 3.1 reduces to Theorem 1.3 (1). The following theorem

provides sufficient coefficient conditions for functions to belong to either R(α,β)∩S
∗
η or

R(α,β)∩Cη for an appropriate value η.

Theorem 3.2. Let β< 1, α> 0, and f ∈A satisfy inequality (8).

(1) A function f is in the class S
∗
η if η ≤ (2α+β)/(2α+ 1). The bound (2α+β)/(2α+ 1) is

sharp.

(2) A function f is in the class Cη if η≤ (α−1+β)/α, and β≥ 0.

Proof. (1) If η ≤ η0 := (2α+β)/(2α+ 1), then S
∗
η0

⊂ S
∗
η . Hence it is enough to prove that

f ∈S
∗
η0

. The inequality

(2α+1)n −2α≤αn2
+ (1−α)n (n ≥ 2, α≥ 0)

together with inequality (8) show that

∞
∑

n=2

(n −η0)|an| =

∞
∑

n=2

(2α+1)n −2α−β

2α+1
|an|

≤

∞
∑

n=2

αn2 + (1−α)n −β

2α+1
|an|

≤
1−β

2α+1
= 1−η0.

It is now evident from Theorem 1.3 (1) that f ∈ S
∗
η0

. The result is sharp for the function

f0 ∈S
∗
η0

given by

f0(z) = z −
1−β

2α+2−β
z2.

(2) If η ≤ η0 := (α− 1 +β)/α, then Cη0
⊂ Cη. Hence it suffices to show f ∈ Cη0

. The

inequality

αn2
+ (1−α)n −nβ≤αn2

+ (1−α)n −β (n ≥ 2, β≥ 0)

together with inequality (8) yield

∞
∑

n=2

n(n −η0)|an | =
1

α

∞
∑

n=2

(

αn2
+ (1−α)n −nβ

)

|an|

≤
1

α

∞
∑

n=2

(

αn2
+ (1−α)n −β

)

|an |

≤
1−β

α
= 1−η0.

It follows now from Theorem 1.3(2) that f ∈Cη0
. ���

Along similar lines with Theorem 2.1, the following result provides a sufficient coefficient

inequality for functions to belong to the class R(α,β).
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Theorem 3.3. Let β< 1 and f ∈A .

(1) If f satisfies
∑

∞
n=2 n(n −1)|an| ≤ 2(1−β)/(2α+2−β), α ≥ 0, then f ∈ R(α,β). The bound

2(1−β)/(2α+2−β) is sharp.

(2) Let 0 ≤α≤ 1 and η ∈R be given by

η=







4(1−β)/(3α+1), α+β≥ 1,

4(1−β)/(2α+2−β), α+β≤ 1.

If f satisfies
∑

∞
n=2 n2|an| ≤ η, then f ∈R(α,β). The result is sharp for α+β≤ 1.

Proof.

(1) Let f satisfy
∑∞

n=2 n(n −1)|an | ≤ 2(1−β)/(2α+2−β). Since

2αn2
+2(1−α)n −2β ≤ (2α+2−β)n(n −1), n ≥ 2,

it follows that

∞
∑

n=2

(

αn2
+ (1−α)n −β

)

|an| ≤
1

2

∞
∑

n=2

n(n −1)(2α+2−β)|an | ≤ 1−β.

Lemma 3.1 now yields f ∈R(α,β). The result is sharp for the function f0 ∈R(α,β) given by

f0(z) = z −
1−β

2α+2−β
z2.

(2) Let α+β≥ 1 and f satisfy
∑∞

n=2 n2|an| ≤ 4(1−β)/(3α+1). In this case, since

4
(

αn2
+ (1−α)n −β

)

≤ (3α+1)n2 (n ≥ 2),

it readily follows that

∞
∑

n=2

(

αn2
+ (1−α)n −β

)

|an| ≤
3α+1

4

∞
∑

n=2

n2
|an| ≤ 1−β.

Lemma 3.1 shows that f ∈R(α,β).

Now, let α+β ≤ 1 and the function f satisfy
∑

∞
n=2 n2|an| ≤ 4(1−β)/(2α+2−β). In this

case, the inequality

4
(

αn2
+ (1−α)n −β

)

≤ n2(2α+2−β) (n ≥ 2)

shows that
∞
∑

n=2

(

αn2
+ (1−α)n −β

)

|an | ≤
1

4

∞
∑

n=2

n2(2α+2−β)|an | ≤ 1−β,
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and hence, Lemma 3.1 implies that f ∈R(α,β). The function f0 ∈R(α,β) given by

f0(z) = z −
1−β

2α+2−β
z2

demonstrates sharpness of the result. ���

4. Functions with negative coefficients

In this section, certain classes of functions with negative coefficients are investigated.

The class of functions with negative coefficients, denoted by T , consists of functions f of the

form

f (z) = z −
∞
∑

n=2

an zn (an ≥ 0). (9)

Denote by T S
∗(α), T S

∗
α, T C (α), and T C α the respective subclasses of functions with

negative coefficients in S
∗(α), S

∗
α , Cα and C (α). For starlike and convex functions functions

with negative coefficients, Silverman [11] obtained the following result.

Theorem 4.1 ([11, Theorem 2, p. 110], [11, Corollary 2, p. 111]). Let α ∈ [0,1), and f ∈ T be

given by (9). Then

f ∈T S
∗(α) ⇐⇒ f ∈T S

∗
α ⇐⇒

∞
∑

n=2

(n −α)an ≤ 1−α,

and

f ∈T C (α) ⇐⇒ f ∈T C α ⇐⇒

∞
∑

n=2

n(n −α)an ≤ 1−α.

For functions with negative coefficients, the next theorem proves the equivalence be-

tween the inequalities
∑

∞
n=2 n(n −1)an ≤β and | f ′′(z)| <β.

Theorem 4.2. Let β> 0. If f ∈T is given by (9), then

| f ′′(z)| ≤β⇐⇒

∞
∑

n=2

n(n −1)an ≤β.

Proof. The necessary condition follows by allowing z → 1− in

| f ′′(z)| =

∣

∣

∣

∣

∞
∑

n=2

n(n −1)an zn−2

∣

∣

∣

∣

≤β.

If f satisfies the coefficient inequality
∑

∞
n=2 n(n −1)an ≤β, then

| f ′′(z)| ≤
∞
∑

n=2

n(n −1)an|z|
n−2

≤

∞
∑

n=2

n(n −1)an ≤β. ���
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Remark 4.3. It is known that functions f ∈A satisfying the inequality | f ′′(z)| ≤β for 0 <β≤ 1

are starlike, and if | f ′′(z)| ≤β for 0 <β≤ 1/2, then f ∈C [13, Theorem 1, p.1861].

Theorem 4.4. Let 0 ≤α< 1.

(1) If f ∈T C (α), then
∑

∞
n=2 nan ≤ (1−α)/(2−α). The bound (1−α)/(2−α) is sharp.

(2) If f ∈T C (α), then
∑

∞
n=2 n(n −1)an ≤ 1−α.

(3) If f ∈T C (α), then
∑∞

n=2(n −1)an ≤ (1−α)/2(2−α). The bound (1−α)/2(2−α) is sharp.

(4) If f ∈T C (α), then
∑

∞
n=2 n2an ≤ 2(1−α)/(2−α). The bound 2(1−α)/(2−α) is sharp.

Proof. The results follow respectively from Theorem 4.1 and the simple inequalities 2−α ≤

n−α, n−1 ≤n−α, 2(2−α)(n−1) ≤ n(n−α), and n2(2−α) ≤ 2n(n−α) for all n ≥ 2. Sharpness

of the result are demonstrated by the function f0 given by

f0(z) = z −
1−α

2(2−α)
z2. ���

���

The Alexander’s relation between T C (α) and T S
∗(α) readily yields the following corol-

lary.

Corollary 4.5. Let 0 ≤α< 1.

(1) If f ∈T S
∗(α), then

∑∞
n=2 an ≤ (1−α)/(2−α). The bound (1−α)/(2−α) is sharp.

(2) If f ∈T S
∗(α), then

∑

∞
n=2(n −1)an ≤ 1−α.

(3) If f ∈T S
∗(α), then

∑

∞
n=2 nan ≤ 2(1−α)/(2−α). The bound 2(1−α)/(2−α) is sharp.

We conclude this section with the investigation on functions with negative coefficients

in the class R(α,β). The class of all such functions is denoted in the sequel by T R(α,β). The

following lemma is needed.

Lemma 4.6. [7, Theorem 8, p.414] Let β< 1, α≥ 0, and f ∈T . Then,

f ∈T R(α,β) ⇐⇒

∞
∑

n=2

(

αn2
+ (1−α)n −β

)

an ≤ 1−β.

Corollary 4.7. Let β< 1, α> 0 and f ∈T R(α,β).

(1) The function f ∈T S
∗
η provided η≤ (2α+β)/(2α+1), and the bound (2α+β)/(2α+1) is

sharp.

(2) The function f ∈T C η provided η≤ (α−1+β)/α, and β≥ 0.

Proof. The result follows from Lemma 4.6 and Theorem 3.2. ���

The next result shows that T C
(

(2α+3β−2)/(2α+β)
)

⊂T R(α,β) for 0 ≤β< 1, α ∈R.
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Theorem 4.8. Let 0≤β< 1, and α≥ 0. If η≥ (2α+3β−2)/(2α+β), then T C (η) ⊆T R(α,β).

Proof. Forη0 ≤ η, T C (η) ⊂T C (η0) and therefore it is sufficient to prove T C (η0) ⊆T R(α,β)

where η0 = (2α+3β−2)/(2α+β). For n ≥ 2, the inequality

2αn2
+2(1−α)n −2β ≤ n

(

(2α+β)n − (2α+3β−2)
)

holds, and Theorem 4.1 yields

∞
∑

n=2

(

αn2
+ (1−α)n −β

)

an ≤
1

2

∞
∑

n=2

n
(

(2α+β)n − (2α+3β−2)
)

an

=
2α+β

2

∞
∑

n=2

n(n −η0)an

≤
2α+β

2
(1−η0)

= 1−β.

It is now evident from Lemma 4.6 that f ∈T R(α,β). ���

Theorem 4.9. Let β< 1, and f ∈T R(α,β).

(1) Then
∑

∞
n=2 n(n −1)an < (1−β)/α when α> 0.

(2)
∑∞

n=2(n −1)an ≤ η where η= (1−β)/(1−α), β≤ 3α+1, and 0 ≤α< 1.

(3) For 0 ≤α≤ 1, and

η=







(1−β)/α, β≤ 2(1−α),α > 0

4(1−β)/(2α+2−β), β≥ 2(1−α),β ≥ 0,α> 1/2,

then
∑

∞
n=2 n2an ≤ η. The result for β≥ 2(1−α) is sharp.

(4)
∑

∞
n=2 nan ≤ 2(1−β)/(2α+2−β), α,β≥ 0. The result is sharp.

Proof. The equivalence in Lemma 4.6 between f ∈T R(α,β) and

∞
∑

n=2

(

αn2
+ (1−α)n −β

)

an ≤ 1−β

is used throughout the proof of this theorem.

(1) Since

αn(n −1) ≤αn2
+ (1−α)n −β, n ≥ 2,

it readily follows that

∞
∑

n=2

n(n −1)an <

∞
∑

n=2

αn2 + (1−α)n −β

α
an ≤

1−β

α
.
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(2) If β≤ 3α+1, then

(n −1)(1−α) ≤αn(n −1)+n −β, n ≥ 2,

and use of this inequality shows that

∞
∑

n=2

(n −1)an ≤

∞
∑

n=2

αn2 + (1−α)n −β

1−α
an ≤

1−β

1−α
.

(3) If β≤ 2(1−α), the inequality

αn2
≤αn2

+2(1−α)−β ≤αn2
+n(1−α)−β

shows that
∞
∑

n=2

n2an ≤

∞
∑

n=2

αn2 + (1−α)n −β

α
an ≤

1−β

α
.

In the case β≥ 2(1−α), the inequality

n2(2α+2−β) ≤ 4(αn2
+ (1−α)n −β), n ≥ 2,

readily gives
∞
∑

n=2

n2an ≤

∞
∑

n=2

4(αn2 + (1−α)n −β)

2α+2−β
an ≤

4(1−β)

2α+2−β
.

(4) For α,β≥ 0, the inequality

(2α+2−β)n ≤ 2
(

αn2
+ (1−α)n −β

)

shows that
∞
∑

n=2

nan ≤

∞
∑

n=2

2
(

αn2 + (1−α)n −β
)

2α+2−β
an ≤

2(1−β)

2α+2−β
.

The sharpness can be seen by considering the function f0 given by

f (z) = z −
1−β

2α+2−β
z2

∈T R(α,β). ���

5. Applications to Gaussian hypergeometric functions

For a,b,c ∈C with c 6= 0,−1,−2, . . . , the Gaussian hypergeometric function is defined by

F (a,b;c ; z) :=
∞
∑

n=0

(a)n(b)n

(c)n(1)n
zn

= 1+
ab

c

z

1!
+

a(a +1)b(b +1)

c(c +1)

z2

2!
+·· · ,

where (λ)n is the Pochhammer symbol defined in terms of the Gamma function by

(λ)n =
Γ(λ+n)

Γ(λ)
(n = 0,1,2, . . . ).
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The series converges absolutely in D. It also converges on |z| = 1 when Re(c −a −b) > 0. For

Re(c −a−b)> 0, the value of the hypergeometric function F (a,b;c ; z) at z = 1 is related to the

Gamma function by the Gauss summation formula

F (a,b;c ;1)=
Γ(c)Γ(c −a −b)

Γ(c −a)Γ(c −b)
(c 6= 0,−1,−2, . . .). (10)

By making use of Theorem 1.3, Silverman [12] determined conditions on a,b,c so that

the function zF (a,b;c ; z) belongs to certain subclasses of starlike and convex functions. In

the following theorem, conditions on the parameters a,b,c are determined so that the func-

tion zF (a,b;c ; z) belongs to the class R(α,β). With regard to the other classes investigated in

this paper, similar results could also be obtained. The proof follows directly by applying ap-

propriate theorems from the previous sections, the Gauss summation formula for the Gaus-

sian hypergeometric functions, and certain straight forward manipulations; the method of

proof is similar to those of Silverman [12], and Kim and Ponnusamy [5]. The following Gauss

summation formula for the Gaussian hypergeometric functions is required.

Lemma 4.10. [1, Lemma 10, p.169] Let a, b, c > 0.

(1) If c > a +b +1,
∞
∑

n=1

n
(a)n(b)n

(c)n(1)n
=

ab

c −a −b −1
F (a,b;c ;1).

(2) If c > a +b +2,

∞
∑

n=1

n2 (a)n(b)n

(c)n(1)n
=

(

(a)2(b)2

(c −a −b −2)2
+

ab

c −a −b −1

)

F (a,b;c ;1).

Theorem 4.11. Let a,b ∈C and c ∈R satisfy c > |a|+ |b|+2. If either

F (|a|, |b|;c ;1)

(

(|a|)2(|b|)2

(c −|a|− |b|−2)2
+

2|ab|

c −|a|− |b|−1

)

≤
2(1−β)

2α+2−β
(11)

for α≥ 0, β< 1, or

F (|a|, |b|;c ;1)

(

(|a|)2(|b|)2

(c −|a|− |b|−2)2
+

3|ab|

c −|a|− |b|−1
+1

)

≤
6−5β+2α

2α+2−β
(12)

for 1−α≥ β, α ∈ [0,1], then the function zF (a,b;c ; z)∈R(α,β). In the case b = a, the range of

c in either case can be improved to c > max{0,2(1+Rea)}.

Proof. Forα≥ 0, β< 1, it follows from the fact |(a)n | ≤ (|a|)n and Lemma 4.10 that

∞
∑

n=2

n(n −1)

∣

∣

∣

∣

(a)n−1(b)n−1

(c)n−1(1)n−1

∣

∣

∣

∣

≤

∞
∑

n=2

n(n −1)
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

= F (|a|, |b|;c ;1)

(

(|a|)2(|b|)2

(c −|a|− |b|−2)2
+

2|ab|

c −|a|− |b|−1

)
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≤
2(1−β)

2α+2−β
,

and Theorem 3.3 (1) shows that zF (a,b;c ; z)∈R(α,β).

For 1−α≥β, α ∈ [0,1], it follows from Lemma 4.10 that

∞
∑

n=2

n2

∣

∣

∣

∣

(a)n−1(b)n−1

(c)n−1(1)n−1

∣

∣

∣

∣

≤

∞
∑

n=2

n2 (|a|)n−1(|b|)n−1

(c)n−1(1)n−1

= F (|a|, |b|;c ;1)

(

(|a|)2(|b|)2

(c −|a|− |b|−2)2
+

3|ab|

c −|a|− |b|−1
+1

)

−1

≤
4(1−β)

2α+2−β
.

The result follows from Theorem 3.3 (2). The proof for the case b = a is similar. ���
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